نويسندگان
دانلود قالب

ایران تم ،مرجع بهترین قالب های وبلاگ
RSS Feed

روح الله موسوی




 


چدن ها و مبانی سیستم های راهگاهی

 

مقدمه:
در میان انواع فلزات و آلیاژ های ریختگی چدن ها بیشترین مقدار مصرف را دارا بوده و اندوخته های علمی و تجربی درباره آن ها نیز بسیارند . برای آنان که در ارتباط مستقیم و یا غیر مستقیم با ساخت قطعات چدنی هستند این احساس وجود دارد که چدن ریزی در مقایسه با دیگر فلزات ریخته گری روش ساده ای است . کیفیت هر محصول تولیدی ریشه در نیاز و فرهنگ آن جامعه دارد . کشوری که متکی به سیستم حمل ونقل دستی است می تواند قطعات ریختگی با کیفیت نازل را پذیرا باشد . در ارتباط با تکنولوژی تولید قطعات چدنی چنانچه مرحله طراحی سیستم های راهگاهی و تغذیه گذاری مهمترین جزء این مراحل نباشد از اصولی ترین قسمت های آن خواهد بود . امروزه این مرحله به عنوان ابزار بسیار مفیدی جهت کنترل معایب در قطعات بویژه عیوب انقباضی و بهره دهی قطعات ریختگی به شمار می رود. طراحی راهگاها و تغذیه بدون توجه به متغیرهای بسیاری که در مرغوبیت قطعات ریختگی موثر است انجام گیرد که متغیرهایی نظیر کیفیت متالوژیکی مذاب و نوع مخلوط سازنده قالب و روش ریخته گری در ارائه طرح سیستم راهگاهی و تغذیه مؤثر است لذا طرح باید این عوامل را شناسایی کرده و بر اساس شناخت کافی آن ها نوع سیستم لازم را انتخاب کند . لذا موفقیت هنگامی بدست می آید که طراح و یا گروه طراحی در ارتباط نزدیک با بخش تولید قرار گرفته و نوعی سیستم راهگاهی و تغذیه را انتخاب کند که حتی المقدور بتواند معایب و نارسائی های مرحله تولید را جبران کند

مبانی سیستم های راهگاهی

یکی از عوامل لازم در تهیه قطعات ریخته گری سالم آگاهی از چگونگی رفتار مذاب از هنگام ورود به داخل قالب تا مرحله خاتمه انجماد آن است .  

با نگرشی به قطعات ریختگی بجای مانده از زمان های بسیار دور می توان دریافت که ریخته گران گذشته تا چه حد به اهمیت راهگاه گذاری صحیح قطعات توجه داشته اند .

مطالعه سیستم های راهگاهی ( Gating systems ) بدون آشنایی به رفتار انقباضی مذاب و مسئله تغذیه گذاری ( Risering ) قطعات امکان پذیر نیست . به همین دلیل لازم است در طراحی سیستم های راهگاهی چگونگی انقباض مذاب ( Liquid shirinkage ) قبل از شروع انجماد و در مرحله انجماد ( Solidification shrinkage ) نیز مد نظر قرار می گیرد .

و ظایف یک سیستم راهگاهی مناسب به شرح ذیل است :

1- انتقال مذاب از بوته به محفظه قالب با سهولت انجام پذیرد .

2- حرکت مذاب در مجاری و راهگاها با حداقل حرکت اغتشاشی انجام گیرد .

3- مذاب به گونه ای وارد قالب گردد که سردترین قسمت بار به دورترین قسمت محفظه قالب رفته و گرم ترین آن در راه گاها باقی بماند این حالت موجب می شود تا از ایجاد حفره های انقباضی مذاب در قطعه ریخته گری جلوگیری گردد .

4- راهگاها آنقدر بزرگ در نظر گرفته شوند که مذاب بتواند اولاً محفظه قالب را کاملا پر کرده و ثانیا به تغذیه قطعات ریختگی کمک کند .

معایبی که در اثر عدم دقت در طراحی سیستم های راهگاهی امکان وجود دارند عبارتند از :

1- وارد شدن ماسه شلاکه ( Slag ) و ناخالصی ها ( Impurities ) به همراه مذاب به محفظه قالب خصوصا تجمع در بالا قالب .

2- خشن شدن سطح قطعه ریختگی

3- جذب گاز در مذاب و ایجاد مک و حفره در قطعه ریختگی

4- اکسید شدن بیش از حد مذاب

5- ایجاد حفره های انقباضی در قطعه ریختگی

6- نفوذ مذاب در ماهیچه ها

قبل از پرداختن به چگونگی طراحی یک سیستم راهگاهی باید اجزاء مختلف آن را شناخت که در شکل اجزاء یک سیستم راهگاهی نشان داده شده اند .

اصل بقاء انرژی : قانون برنولی ( Bernoulli,s equation )

در یک سیستم بسته جمع جبری انرژی همواره مقدار ثابتی می باشد . درون این سیستم بسته امکان تبدیل صورت های مختلف انرژی به یکدیگر وجود دارد در حالی که جمع جبری انرژی های موجود در سیستم ثابت می ماند .

هر مایع در حال جریان درون یک سیستم بسته دارای سه نوع انرژی می باشد :

الف ) انرژی پتانسیل :

      عبارت است از انرژی واحد وزنی از مایع که در ارتفاع h از صفحه مبنا قرار گرفته است .

Ep= h

ب ) انرژی فشاری

            انرژی حاصل از فشاری است که بر واحد وزن مایع اعمال می گردد .

Epr = p/γ

که در آن گاما وزن مخصوص و ح فشار می باشد .

ج ) انرژی تحرکی

           توسط عزم حرکتی واحد وزن مایع متحرکی که با سرعت v در حال جریان است بیان می گردد .

Ek= v2/2g

جریان آرام و اغتشاشی مایع ( Laminar and turbulent flow )

جریان هر مایعی درون یک کانال می تواند به دو صورت آرام یا اغتشاشی انجام گیرد . حرکت مایع بصورت آرام هنگامی است که سرعت جریان آن در یک کانال از دیواره کانال تا مرکز آن به تدریج افزایش یابد .

از نظر تئوری بر اساس این تعریف سرعت جریان مذاب در دیواره راهگاهها را می توان صفر در نظر گرفت و در مرکز سطح مقطع سرعت در حداکثر مقدار خود می باشد .

سرعت پرشدن قالب از مذاب و طراحی تنگه ( Choke )

به کمک بعضی از قوانین فیزیکی ذکر شده می توان سرعت پر شدن قالب از مذاب را محاسبه کرد . برای انجام این منظور لازم است سطح مقطع آن قسمتی از راهگاهها را که کمترین حجم مذاب در واحد زمان را می تواند از خود عبور دهد بدست آوریم . این سطح مقطع اصطلاحا تنگه نامیده شده و با Ac نشان داده می شود .

در اکثر موارد تنگه در نزدیکی سطح جدایش قالب تعبیه می گردد . شکل زیر یک سیستم راهگاهی را نشان می دهد که تنگه در محل تماس راهگاه اصلی ( R ) و راهگاه فرعی ( G ) احداث گردیده است .

H ارتفاع مذاب از سطح بالای حوضچه تا خط جدایش و S راهگاه بارریز و L ارتفاع تا بالای محفظه قالب و X ارتفاع مذاب پرشده در بالای قالب از سطح جدایش می باشد که متغیر است .

شیب دادن راهگاه بارریز( The tapering of the sprue )

راهگاه بارریز یک کانال عمودی است که مذاب را از حوضچه به داخل راهگاه اصلی هدایت می کند . در شروع ریختن مذاب سرعت جریان آزاد مذاب در راهگاه بارریز به همراه افزایش فاصله آن از سطح حوضچه افزایش می یابد .

  

به هر حال در صورتی که راهگاه بارریز به جای مخروط ناقص به صورت استوانه ای باشد ایجاد فضای خالی در طول راهگاه بارریز تنها در مراحل اولیه ریختن مذاب به داخل قالب می باشد . علت این امر آن است که به علت وجود تنگه در سیستم راهگاهی مذاب ریخته شده در قالب بلافاصله باعث پر کردن کامل راهگاه بارریز می گردد به همین دلیل در سیستم راهگاهی صحیح طراحی شده برای چدن ریزی در موارد بسیار ی از راهگاه های بارریز بدون شیب استفاده می گردد .

فشار و سرعت در راهگاه های فرعی

بطور کلی دو نوع سیستم راهگاهی از نظر فشار روی مذاب و سرعت جریان مذاب وجود دارد که عبارتند از : سیستم فشاری و غیر فشاری

ویژگی سیستم فشاری آن است که سرعت سیلان مذاب در راهگاه فرعی و بر مبنای کل ارتفاع فرواستاتیکی مذاب در قالب تعیین می شود در حالی که سیستم غیر فشاری عامل تعیین کننده این سرعت ارتفاع مذاب در راهگاههای فرعی می باشد که کاملا از مذاب پر نباشد و از طرف دیگر سیستم راهگاهی را هنگامی فشاری گویند که کنترل میزان مذاب ورودی به محفظه قالب توسط سطح مقطع بین راهگاه اصلی و همه راهگاههای فرعی انجام گیرد در این سیستم مجموع سطوح مقاطع راهگاه های فرعی کمتر از سطح مقطع راهگاه بارریز می باشد .

در سیستم غیر فشاری کنترل میزان مذاب ورودی به محفظه قالب توسط سطح مقطع تحتانی راهگاه بارریز و قسمتی از راهگاه اصلی که در مجاورت راهگاه بارریز قرار دارد انجام می گیرد . در این سیستم مجموع سطوح مقاطع راهگاههای فرعی از سطح مقطع راهگاه بارریز بیشتر بوده و در نتیجه فشار مذاب در راهگاه بارریز گرفته می شود .

محاسبات سیستم راهگاهی

طراحی و محاسبات سیستم راهگاهی بدون آشنائی به مبانی فیزیک و متالوژی چنانچه غیرممکن نباشد حداقل بیسار مشکل است .

در روش قالب گیری ماشینی مواردی دیده می شود که برای پرهیز از مخارج زیاد تهیه تعدادی مدل مشابه قطعات با اشکال مختلف را روی یک صفحه مدل قرار می دهند این عمل توصیه نمی گردد زیرا تنوع قطعات ریختگی در یک قالب طراحی سیستم راهگاهی و تغذیه گذاری قطعات را با مشکلات زیادی روبرو می سازد .

بهترین طرح ساده ترین طرح است لذا بهتر است تا حد امکان از قطعات مشابه در یک قالب استفاده گردد.

علاوه بر مطالب فوق توجه به نکات زیر در طراحی موفقیت آمیز راهگاه و تغذیه قطعات ریخته گری چدنی لازم است :

1- از حداکثر فضای قالب به منظور استفاده از حداکثر بهره دهی قطعات استفاده کنیم ضمن آنکه جالی خالی مناسب برای راهگاهها و تغذیه ها باقی بگذاریم .

2- به مرغوبیت مذاب و کیفیت قالب توجه داشته باشیم .

3- سطح جدایش قطعه ریختگی را به گونه ای انتخاب کنیم که نیاز به ماهیچه گذاری را به حداقل رساند .

4- تمام قطعات یا اکثر آن ها در درجه بالائی قرار گیرند تا پرشدن آن ها از مذاب به آرامی انجام شود .

5- به منظور استفاده از حداکثر بهره دهی تغذیه ها بهتر است از یک تغذیه برای دو یا چند قطعه ریختگی استفاده گردد .

وظیفه اصلی یک سیستم راهگاهی آن است که مذابی تمیز و عاری از شلاکه و ناخالصی ها را به محفظه قالب منتقل کند به این منظور سه نکته زیر باید رعایت شوند :

1-       ایجاد ارتباط مذاب موجود در محفظه قالب با فضای خارج

2-       گرفتن شلاکه و ناخالصی ها

3-       ایجاد شرائطی که گاز ها و هوای موجود در قالب را بتوان به فضای خارج منتقل کرد

سیستم فشاری ( Pressurized gating system )

در این سیستم مجموع سطوح مقاطع راهگاههای فرعی کمتر از سطح مقطع راهگاه بارریز است زیرا در چنین حالتی همواره فشاری در پشت مذاب در حال جریان موجود خواهد بود . در این سیستم راهگاهها بلافاصله از مذاب پر شده و فشار پشت فلز موجب می شود که مذاب در راهگاهها پس زده نشود و در هنگام استفاده از چند راهگاه فرعی با سطوح مقاطع یکسان مقدار جریان مذاب در تمام آن ها برابر است ولی در سیستم غیر فشاری تمایل خروج مذاب از دورترین راهگاه فرعی نسبت به راهگاه بارریز بیشتر می باشد .

در هر حال از آنجائی که سرعت جریان مذاب در سیستم های فشاری زیادتر است لذا بروز بعضی معایب در قطعات ریختگی متحمل خواهد بود برای مثال در گوشه هایی که دارای قوس تندی هستند حرکت مذاب اغتشاشی بوده و بنابراین جذب گاز در مذاب و درنتیجه ظهور اکسید ها و ناخالصی ها و شسته شدن دیواره های قالب می توانند رخ دهند .

سیستم غیر فشاری ( Non – pressurized gating system )

در این سیستم مجموع سطوح مقاطع راهگاه های فرعی از سطح مقطع راهگاه بارریز بیشتر بوده و در نتیجه فشار مذاب در راهگاه بارریز گرفته شده و مذاب به آرامی وارد محفظه قالب می گردد که در این سیستم از آن جایی که مذاب در این سیستم به آرامی وارد محفظه قالب می شود لذا جهش فلز به داخل محفظه قالب و حرکت اغتشاشی در آن وجود ندارد و با توجه به این واقعیت که در پشت مذاب فشار چندانی وجود ندارد لذا باید سعی کرد تا سیستم راهگاهی همواره از مذاب پر نگهداشته شود و امکان واردکردن یکنواخت مذاب به محفظه قالب از طریق راهگاههای فرعی مشکل است .

حوضچه بارریزی ( Pouring cup or basin )

گشاد کردن قسمت بالای راهگاه بارریز یا ایجاد حوضچه عمل ریختن مذاب را تسهیل می کند . عدم استفاده از حوضچه امکان ورود شلاکه به داخل راهگاه بارریز را زیاد می کند و هرچقدر حوضچه بزرگتر در نظر گرفته شود این امکان تقلیل می یابد . آن قسمتی از حوضچه که در امتداد لوچه پاتیل قرار دارد باید به اندازه کافی طویل در نظر گرفته شود . حوضچه هایی که کف آن ها پایین تر از سطح بالایی راهگاه بارریز قرار دارد وظیفه گرفتن فشار مذاب ورودی را نیز بر عهده داشته و موجب می شوند تا مذاب به آرامی وارد راهگاه بارریز گردد بدترین شکل برای حوضچه حالت قیفی و بهترین شکل برای آن نوع نشان داده شده در شکل می باشد .

در ریختن قطعات بزرگ استفاده از تله در حوضچه ها برای جلوگیری از ورود شلاکه به راهگاه متداول است از آنجائی که این روش جریان مذاب به داخل راهگاه بارریز را به صورت اغتشاشی در می آورد لذا غیرمفید تشخیص داده شده است .

قرار دادن مانعی روی قسمت بالای راهگاه بارریز به منظور پر کردن اولیه حوضچه از مذاب هم به دلیل مشابه مضر است . قطر یا عرض حوضچه باید حداقل دو برابر قطر جریان مذابی که از پاتیل به داخل آن ریخته می شود در نظر گرفته شود . عمق حوضچه نیز باید به صورتی باشد که در هنگام ریختن مذاب به داخل آن هیچگونه پاشیدگی مذاب صورت نگیرد . در شکل زیر ابعاد یک نوع حوضچه مناسب که بیشتر در ریخته گری انواع چدن با گرافیت کروی مورد مصرف دارد نشان داده شده است .

راهگاه بارریز ( Sprue )

استفاده از چند راهگاه بارریز در یک قالب به هیچ وجه توصیه نمی شود مگر آنکه قطعه ریختگی بسیار بزرگ بوده و ریختن آن نیاز به استفاده از چند پاتیل داشته باشد .

ارتفاع راهگاه بارریز بیشتر با توجه به ارتفاع درجه های موجود در کارگاه تعیین می شود . سطح مقطع این راهگاه در سیستم فشاری تقریبا 3 برابر مجموع سطوح مقاطع راهگاههای فرعی در نظر گرفته می شود و در سیستم غیر فشاری مجموع سطوح مقاطع راهگاههای فرعی تقریبا باید با سطح مقطع قسمت تحتانی راهگاه بارریز یکسان در نظر گرفته شود .

راهگاه بارریز معمولا بصورت استوانه ای در نظر گرفته می شود که سطح مخصوص آن اندکی کمتر از سطح مخصوص راهگاه با مقطع گوشه دار می باشد و جز این امتیاز دیگری ندارد .

بدلیل مشکلات عملی در تهیه قالب های ماشینی با سرعت بالا در سیستم های فشاری از راهگاه بارریز بدون شیب و یا با شیب جزئی استفاده می شود و در سیستم غیر فشاری همواره لازم است از راهگاه بارریزی استفاده شود که قسمت تحتانی آن کمترین سطح مقطع ممکن را در مقایسه با قسمت های دیگر آن داشته باشد در صورتی که در این سیستم از راهگاه بارریز بدون شیب استفاده شود باید در محل اتصال راهگاه بارریز و راهگاه اصلی از تنگه استفاده کرد .

راهگاه اصلی ( Runner )

بهترین طرح برای راهگاه اصلی ساده ترین آن هاست به همین دلیل چنانچه فضای درجه قالب گیری اجازه دهد بهترین نوع راهگاه اصلی نوع مستقیم است . ایجاد هرگونه قوسی در این راهگاه به ایجاد حرکت اغتشاشی مذاب کمک می کند چنانچه به کار بردن این قوس در راهگاه اصلی اجتناب ناپذیر باشد بایستی این قوس را با حداکثر زاویه ممکن ایجاد کرد در راهگاه اصلی انحنادار نباید راهگاه فرعی را نزدیک قسمت قوس راهگاه اصلی تعبیه کرد . چنانچه از یک راهگاه اصلی گرد استفاده شود باید از به کار بردن راهگاه فرعی در وسط قوس پرهیز کرد . اصولا در حالتی که برای قطعه ای استوانه ای شکل از راهگاه اصلی گرد استفاده شود توصیه می گردد که سیستم راهگاهی غیرفشاری بکار برده شود .

اتصال راهگاه بارریز به راهگاه اصلی

اولین قاعده برای طراحی اتصال فوق آن است که سطح مقطع در قسمت اتصال نبایستی از سطح مقطع قسمت تحتانی راهگاه بارریز کمتر باشد . قسمت انتهائی راهگاه بارریز باید با قسمت تحتانی راهگاه اصلی در یک امتداد قرار گیرند .  

در انتهای راهگاه بارریز چاهکی به نام پای راهگاه تعبیه می شود که مذاب پس از پر کردن به راهگاه اصلی وارد می گردد . سطح مقطع افقی پای راهگاه می تواند حدودا دو برابر سطح مقطع افقی قسمت انتهایی راهگاه بارریز در نظر گرفته شود و عمق آن می تواند تقریبا برابر ارتفاع راهگاه اصلی باشد .

راهگاههای فرعی

راهگاههای فرعی به ویژه در سیستم های فشاری مهمترین جزء سیستم راهگاهی به شمار می روند . تعبیه ضخامت محاسبه شده راهگاه فرعی در مرحله قالب گیری به دقت زیادی نیاز دارد این مشکل در مواردی می تواند باعث افزایش ضایعات قطعات ریختگی شود حداقل ضخامت مجاز راهگاه فرعی به درجه حرارت ریختن مذاب بستگی دارد .

هنگامی که گوشه های راهگاه فرعی جامد شد همزمان با آن نصف ضخامت این راهگاه جامد می شود . محاسبه نشان می دهد که چنانچه راهگاه فرعی در قالب با یک شیب 45 درجه تعبیه گردد گوشه های آن حتی سریعتر جامد می شود .

در یک سیستم راهگاهی تعداد راهگاههای فرعی به طرح قطعه بستگی دارد . در سیستم فشاری عرض راهگاههای فرعی را نباید بیش از حد بزرگ در نظر گرفت زیرا در مرحله اولیه ریختن مذاب در قالب و قبل از آن که راهگاه اصلی از مذاب پر شود امکان ورود فلز و احتمالا شلاکه به داخل راهگاههای فرعی وجود خواهد داشت .

اصول طراحی سیستم فشاری

در ریخته گری چدنها و در بیشتر موارد استفاده از سیستم فشاری بر سیستم غیر فشاری ترجیح داده می شود . یکی از انتقادات به این نوع سیستم راهگاهی وارد شدن سریع مذاب از راهگاههای فرعی به محفظه قالب است که خود می تواند باعث شسته شدن ماسه قالب شود . سرعت جریان مذاب در راهگاه فرعی بسته به ارتفاع مذاب در راهگاه بارریز است .

یکی از مهمترین پارامترها در طراحی سیستم راهگاهی انتخاب زمان مناسب برای پرکردن محفظه قالب می باشد . اندازه مناسب برای تنگه تابعی از مدت زمان ریختن مذاب می باشد برای آنکه مذاب به سهولت و بدون تأخیر محفظه قالب را پر کند ایجاد منافذ هوا به منظور جلوگیری از ازدیاد فشار در محفظه قالب در اثر تراکم هوا و گاز های موجود در محفظه قالب ضروری می باشد.

درجه حرارت ریختن مذاب و ظرفیت پاتیل ها

انتخاب درجه حرارت ریختن مذاب بستگی به نوع سیستم راهگاهی و تغذیه گذاری قطعات دارد . برای ریخته گری قطعات چدنی با جداره های ضخیم با استقاده از تغذیه ریختن مذاب در درجه حرارتی بالایی انجام می شود .

انتخاب اندازه پاتیل بایستی به گونه ای انجام گیرد که افت درجه حرارت مذاب در آن حداقل مقدار ممکن بوده و خالی و پر کردن آن نیز با مشکلی مواجه نباشد و شکل لوچه پاتیل بسیار مهم بوده و به شکل U کشیده ترجیح داده می شود ضمن آن که سطح مقطع کانال بارریزی آن دو برابر سطح مقطع راهگاه بارریز در نظر گرفته می شود .

اصول طراحی سیستم غیر فشاری

نسبت بین سطوح مقاطع قسمت فوقانی راهگاه بارریز و تنگه باید در همان حدی در نظر گرفته شود که در سیستم راهگاهی فشاری معمول است در این سیستم وردو شلاکه به محفظه قالب می تواند در سه مرحله زمانی مختلف انجام گیرد : مرحله اول شبیه حالت فشاری است با این تفاوت که این زمان کوتاه تر بوده و احتمالا شلاکه نمی تواند به راهگاههای فرعی راه یابد و مرحله دوم با سیستم فشاری شباهت دارد و همین طور مرحله سوم .

در این جا ترجیح داده می شود که راهگاه اصلی به صورت مستقیم باشد و در این سیستم مجموع سطوح مقاطع راهگاههای فرعی باید بیشتر از سطح مقطع تنگه در نظر گرفته شود .

کوچکترین سطح مقطع در سیستم غیر فشاری در محل اتصال راهگاه بارریز به راهگاه اصلی واقع است . مجموع سطوح مقاطع راهگاههای فرعی معمولا دو تا چهار برابر سطح مقطع تنگه در نظر گرفته می شود . سرعت خطی جریان مذاب در راهگاه فرعی یک سیستم غیر فشاری کمتر از مقدار مشابه در سیستم فشاری است .

سیستم راهگاهی با سطح جدایش عمودی

تهیه قالب های ماسه ای با سطح جدایش عمودی به طور گسترده ای در ریخته گری رواج پیدا کرد . روش قالب گیری پوسته ای و روش های قالب گیری ماشینی بدون درجه با سرعت قالب گیری بالا که به سریع ریختن مذاب در قالب منتهی می شود از اهمیت زیادی برخوردار است . تکنولوژی راهگاهی در این روش قالب گیری هنوز در مراحل تکاملی خود قرار دارد در شکل زیر چند نوع متداول از سیستم راهگاهی با سطح جدایش عمودی نشان داده شده است .

روش راهگاه گذاری در ریخته گری چدن با گرافیت کروی برای اضافه کردن منیزیم به مذاب در راهگاه

در این روش آلیاز محتوی منیزیم را در محفظه ای درون سیستم راهگاهی قرار داده و مذاب عاری از منیزیم را درون قالب می ریزند . امروزه این روش در تهیه چدن با گرافیت کروی در سطح گستردهای در صنایع ریخته گری رواج یافته و دارای جاذبه های خاصی می باشد .

غالبا استفاده از سیستم راهگاهی با کنترل جریان مذاب در راهگاه فرعی اصلی توصیه می شود . یکی از مسائل مهم در اضافه کردن منیزیم به مذاب در سیستم راهگاهی امکان ورود شلاکه های منیزیمی به محفظه قالب می باشد به همین دلیل سیستم راهگاهی بایستی به گونه ای طرح گردد که شلاکه در راهگاهها باقی مانده و امکان ورود به محفظه قالب را نیابد .

معایب مربوط به سیستم راهگاهی و روشهای رفع آن ها

یکی از معایب سطحی بسیار آشنا در چدن های خاکستری و انواع چدن با گرافیت کروی حفره های گازی در سطوح فوقانی قطعات ریختگی می باشند در شکل زیر نمونه ای از آن آمده است .

ورود شلاکه به محفظه قالب و بجای ماندن آن در قطعه ریختگی از دیگر معایب معمول در قطعات چدنی است . اکسیدها منبع اصلی شلاکه را تشکیل می دهند ورود شلاکه به محفظه قالب همواره امکان پذیر است مگر آنکه سیستم راهگاهی به درستی طراحی گردد . برخی اکسید ها توسط کربن موجود در آهن مذاب احیاء می شوند . زمان باقی ماندن حبابهای گاز در سطح مشترک قالب و مذاب بستگی به اندازه حبابها و نوع چدن دارد .

انرژی لازم برای نفوذ حباب گازی از سطح مشترک فوق به جداره قالب به مقدار زیادی بستگی به انرژی سطح مشترک مذاب و قالب دارد از این لحاظ چدن با گرافیت کروی بدتر از چدن خاکستری بوده و احتمال بروز معایب گازی سطحی در آن تقریبا 50 درصد بیش از چدن خاکستری می باشد . سه مثال از عیوب فوق در شکل زیر نشان داده شده است .

برای جلوگیری از عیوب فوق طراحی سیستم راهگاهی ضرورت دارد و چنین جریان مذاب در راهگاهها و محفظه قالب باید به آرامی صورت گیرد . ورود شلاکه به محفظه قالب علل گوناگونی دارد نگرفتن شلاکه به طرز صحیح در پاتیل موجب ورود آن به محفظه قالب و حضور آن در قطعه ریختگی می گردد .

نوع چدن و سیستم راهگاهی

از نظر اصولی تفاوتی بین طراحی سیستم راهگاهی برای چدن های خاکستری و انواع چدن با گرافیت کروی وجود ندارد به هر حال به عنوان یک راهنمای کلی می توان چنین اظهار داشت که راهگاه گذاری چدن خاکستری از انواع چدن با گرافیت کروی ساده تر است .

یک اختلاف اساسی در راهگاه گذاری این دو نوع چدن آن است که چدن های خاکستری به راهگاه اصلی با حجم کمتری نیاز دارند و هم چنین گرفتن شلاکه و ناخالصی ها در ریخته گری چدن ها ی خاکستری ساده تر از انواع چدن با گرافیت کروی انجام می شود . مذاب چدن با گرافیت کروی دارای شلاکه بیشتری از مذاب چدن خاکستری است علاوه بر این ها مقدار سیلیسیوم در چدن خاکستری کمتر از چدن با گرافیت کروی است .

طبقه‌بندی چدن‌ها

چدن های عمومی که موارد استعمال آنها در کاربردهای عمده مهندسی است و آلیاژهای با منظور و مقاصد ویژه از جمله چدنهای سفید و آلیاژی که برای مقاومت در برابر سایش ، خوردگی و مقاوم در برابر حرارت بالا مورد استفاده قرار می‌گیرند.

چدن های معمولی (عمومی)

این چدن ها چزو بزرگترین گروه آلیاژهای ریختگی بوده و براساس شکل گرافیت به انواع زیر تقسیم می‌شوند:

چدن های خاکستری ورقه ای یا لایه ای: چدن های خاکستری جزو مهمترین چدن های مهندسی هستند که کاربردی زیاد دارند نام این چدن ها از خصوصیات رنگ خاکستری سطح مقطع شکست آن و شکل گرافیت مشتق می‌شود.خواص چدن های خاکستری به اندازه ، مقدار و نحوه توزیع گرافیت‌ها و ساختار زمینه بستگی دارد. خود این‌ها نیز به کربن و سیلیسیم (C.E.V=%C+%⅓Si+%⅓P) و همچنین روی مقادیر جزئی عناصر ، افزودنی‌های آلیاژی ، متغیرهای فرایندی مانند، روش ذوب ، عمل جوانه زنی و سرعت خنک شدن بستگی پیدا می‌کنند. اما به طور کلی این چدن ها ضریب هدایت گرمایی بالایی داشته، مدول الاستیستیه و قابلیت تحمل شوکهای حرارتی کمی دارند و قطعات تولیدی از این چدن ها به سهولت ماشینکاری و سطح تمام شده ماشینکاری آنها نیز مقاوم در برابر سایش از نوع لغزشی است. این خواص آنها را برای ریختگی هایی که در معرض تنش‌های حرارتی محلی با تکرار تنشها هستند، مناسب می‌سازد. افزایش میزان فریت در ساختار باعث استحکام مکانیکی خواهد شد. این نوع حساس بودن به مقاطع نازک و کلفت در قطعات چدنی بدنه موتورها مشاهده می شود دیواره نازک و لاغر سیلندر دارای زمینه‌ای فریتی و قسمت ضخیم نشیمنگاه یا تاقان‌ها زمینه‌ای با پرلیت زیاد را پیدا می‌کند. همچنین در ساخت ماشین آلات عمومی ، کمپرسورهای سبک و سنگین ، قالب‌ها ، میل لنگ‌ها ، شیر فلکه‌هاو اتصالات لوله‌ها و غیره از چدنهای خاکستری استفاده می‌شود.

چدن های مالیبل یا چکش خوار: چدن های چکش خوار با دیگر چدن ها به واسطه ریخته گری آنها نخست به صورت چدن سفید فرق می‌کنند. ساختار آنها مرکب از کاربیدهای شبه پایدار در یک زمینه‌ای پرلیتی است بازپخت در دمای بالا که توسط عملیات حرارتی مناسب دنبال می‌شود باعث تولید ساختاری نهایی از توده متراکم خوشه‌های گرافیت در زمینه فریتی یا پرلیتی بسته به ترکیب شیمیایی و عملیات حرارتی می‌شود. ترکیب به کار برده شده براساس نیازهای اقتصادی ، نحوه باز پخت خوب و امکان جذب و امکان تولید ریخته‌گری انتخاب می‌شود. مثلا بالا رفتن Si بازپخت را جلو انداخته و موجب عملیات حرارتی خوب و سریعی با سیلکی کوتاه می‌شود و در ضمن مقاومت مکانیکی را نیز اصلاح می‌نماید. تاثیر عناصر به مقدار بسیار کم در این چدن ها دست آورد دیگری در این زمینه هستند. Te و Bi تشکیل چدن سفید در حالت انجماد را ترقی داده، B و Al موجب اصلاح قابلیت بازپخت و توام با افزایش تعداد خوشه‌های گرافیت می‌شود میزان Mn موجود و نسبت Mn/S برای آسان کردن عمل بازپخت می‌بایستی کنترل گردد. عناصری از جمله Cu و Ni و Mo را ممکن است برای بدست آوردن مقاومت بالاتر یا افزایش مقاومت به سایش و خوردگی به چدن افزود. دلیل اساسی برای انتخاب چدن های چکش خوار قیمت تمام شده پایین و ماشینکاری راحت و ساده آنهاست. کاربردهای آنها در قطعات اتومبیل قطعات کشاورزی ، اتصالات لوله ها ، اتصالات الکتریکی و قطعات مورد استفاده در صنایع معدنی است.

چدن های گرافیت کروی یا نشکن: این چدن در سال 1948 در فیلادلفیای آمریکا در کنگره جامعه ریخته گران معرفی شد. توسعه سریع آن در طی دهه 1950 آغاز و مصرف آن در طی سال های 1960 روبه افزایش نهاده و تولید آن با وجود افت در تولید چدن ها پایین نیامده است. شاخصی از ترکیب شیمیایی این چدن به صورت کربن 3.7% ، سیلیسیم 2.5% ، منگنز0.3% ، گوگرد 0.01% ، فسفر 0.01% و منیزیم 0.04% است. وجود منیزیم این چدن را از چدن خاکستری متمایز می‌سازد. برای تولید چدن گرافیت کروی از منیزیم و سریم استفاده می‌شود که از نظر اقتصادی منیزیم مناسب و قابل قبول است. جهت اصلاح و بازیابی بهتر منیزیم برخی از اضافه شونده‌هایی از عناصر دیگر با آن آلیاژ می‌شوند و این باعث کاهش مصرف منیزیم و تعدیل کننده آن است. منیزیم ، اکسیژن و گوگرد زدا است. نتیجتا منیزیم وقتی خواهد توانست شکل گرافیتها را به سمت کروی شدن هدایت کند که میزان اکسیژن و گوگرد کم باشند. اکسیژن‌زداهایی مثل کربن و سیلیسیم موجود در چدن مایع این اطمینان را می‌دهند که باعث کاهش اکسیژن شوند ولی فرآیند گوگردزدایی اغلب برای پایین آوردن مقدار گوگرد لازم است. از کاربردهای این چدن ها در خودروسازی و صنایع وابسته به آن مثلا در تولید مفصل‌های فرمان و دیسک ترمزها ، در قطعات تحت فشار در درجه حرارت های بالا مثل شیر فلکه‌ها و اتصالات برای طرحهای بخار و شیمیایی غلتکهای خشک‌کن نورد کاغذ ، در تجهیزات الکتریکی کشتی‌ها ، بدنه موتور ، پمپ‌ها و غیره است.

چدن های گرافیت فشرده یا کرمی شکل: این چدن شبیه خاکستری است با این تفاوت که شکل گرافیت‌ها به صورت کروی کاذب ، گرافیت تکه‌ای با درجه بالا و از نظر جنس در ردیف نیمه نشکن قرار دارد. می‌توان گفت یک نوع چدنی با گرافیت کروی است که کره‌های گرافیت کامل نشده‌اند یا یک نوع چدن گرافیت لایه‌ای است که نوک گرافیت گرد شده و به صورت کرمی شکل درآمده‌اند. ایت چدن ها اخیرا از نظر تجارتی جای خود را در محدوده خواص مکانیکی بین چدن های نشکن و خاکستری باز کرده است.
ترکیب آلیاژ موجود تجارتی که برای تولید چدن گرافیت فشرده استفاده می‌شود عبارت است از: Mg%4-5 ،Ti%8.5-10.5 ، Ca% 4-5.5 ، Al%1-1.5 ، Ce %0.2-0.5 ،Si%48-52 و بقیه Fe. چدن گرافیت فشرده در مقایسه با چدن خاکستری از مقاومت به کشش ، صلبیت و انعطاف‌پذیری ، عمر خستگی ، مقاومت به ضربه و خواص مقاومت در دمای بالا و برتری بازمینه‌ای یکسان برخوردار است و از نظر قابلیت ماشینکاری ، هدایت حرارتی نسبت به چدن های کروی بهتر هستند. از نظر مقاومت به شکاف و ترک خوردگی برتر از سایر چدن ها است. در هر حال ترکیبی از خواص مکانیکی و فیزیکی مناسب ، این چدن ها را به عنوان انتخاب ایده آلی جهت موارد استعمال گوناگون مطرح می‌سازد. مقاومت بالا در مقابل ترک‌خوردگی آنها را برای قالبهای شمش‌ریزی مناسب می‌سازد. نشان دادن خصوصیاتی مطلوب در دماهای بالا در این چدن ها باعث کاربرد آنها برای قطعاتی از جمله سر سیلندرها ، منیفلدهای دود ، دیسکهای ترمز ، دیسکها و رینگهای پیستون شده است.

چدن های سفید و آلیاژی مخصوص
کربن چدن سفید به صورت بلور سمانتیت (کربید آهن ، Fe3C) می‌باشد که از سرد کردن سریع مذاب حاصل می‌شود و این چدن ها به آلیاژهای عاری از گرافیت و گرافیت‌دار تقسیم می‌شوند و به صورتهای مقاوم به خوردگی ، دمای بالا، سایش و فرسایش می‌باشند.

چدن های بدون گرافیت: شامل سه نوع زیر می باشد:
چدن سفید پرلیتی: ساختار این چدنها از کاربیدهای یکنواخت برجسته و توپر M3C در یک زمینه پرلیتی تشکیل شده است. این چدنها مقاوم در برابر سایش هستند و هنوز هم کاربرد داشته ولی بی‌نهایت شکننده هستند لذا توسط آلیاژهای پرطاقت دیگری از چدن های سفید آلیاژی جایگزین گشته‌اند.

چدن سفید مارتنزیتی (نیکل- سخت): نخستین چدن های آلیاژی که توسعه یافتند آلیاژهای نیکل- سخت بودند. این آلیاژها به طور نسبی قیمت تمام شده کمتری داشته و ذوب آنها در کوره کوپل تهیه شده و چدن های سفید مارتنزیتی دارای نیکل هستند. Ni به عنوان افزایش قابلیت سختی پذیری برای اطمینان از استحاله آستنیتی به مارتنزیتی در طی مرحله عملیات حرارتی به آن افزوده می‌شود. این جدن ها حاوی Cr نیز به دلیل افزایش سختی کاربید یوتکتیک هستند. این چدنها دارای یک ساختار یوتکتیکی تقریبا نیمه منظمی با کاربیدهای یکنواخت برجسته و یکپاره M3C هستند که بیشترین فاز را در یوتکتیک دارند و این چدنها مقاوم در برابر سایش هستند.
چدن سفید پرکرم: چدن های سفید با Cr زیاد ترکیبی از خصوصیات مقاومت در برابر خوردگی ، حرارت و سایش را دارا هستند این چدنها مقاومت عالی به رشد و اکسیداسیون در دمای بالا داشته و از نظر قیمت نیز از فولادهای ضد زنگ ارزان تر بوده و درجاهایی که در معرض ضربه و یا بازهای اعمالی زیادی نیستند به کار برده می‌شوند این چدنها در سه طبقه زیر قرار می‌گیرند:

1.چدنهای مارتنزیتی با Cr %12-28
2.چدنهای فریتی با 34-30% Cr
3.چدنهای آستنیتی با 30-15%Cr و 15-10% Niبرای پایداری زمینه آستنیتی در دمای پایین.

طبقه بندی این چدنها براساس دمای کار ، عمر کارکرد در تنش های اعمالی و عوامل اقتصادی است. کاربرد این چدنها در لوله‌های رکوپراتو ، میله ، سینی ، جعبه در کوره‌های زینتر و قطعات مختلف کوره‌ها، قالب‌های ساخت بطری شیشه و کاسه نمدهای فلکه‌ها است.

چدن های گرافیت دار:
چدن های آستنیتی: شامل دو نوع (نیکل- مقاوم) و نیکروسیلال Ni-Si ، که هر دو نوع ترکیبی از خصوصیات مقاومت در برابر حرارت و خوردگی را دارا هستند. اگرچه چدن های غیر آلیاژی به طور کلی مقاوم به خوردگی بویژه در محیط های قلیایی هستند، این چدنها به صورت برجسته‌ای مقاوم به خوردگی در محیط هایی مناسب و مختص خودشان هستند. چدن های نیکل مقاوم آستنیتی با گرافیت لایه‌ای که اخیرا عرضه شده‌اند از خواص مکانیکی برتری برخوردار بوده ولی خیلی گران هستند. غلظت نیکل و کرم در آنها بسته به طبیعت محیط خورنده شان تغییر می‌کند. مهمترین کاربردها شامل پمپهای دنده‌ای حمل اسید سولفوریک، پمپ خلا و شیرهایی که در آب دریا مصرف می‌شوند، قطعات مورد استفاده در سیستم‌های بخار و جابه‌جایی محلول‌های آمونیاکی، سود و نیز برای پمپاژ و جابجایی نفت خام اسیدی در صنایع نفت هستند.

چدن های فریتی: شامل دو نوع زیر می‌باشد: چدن سفید 5% سیلیسیم در سیلال که مقاوم در برابر حرارت می‌باشد و نوع دیگر چدن پرسیلیسیم (15%) که از مقاومتی عالی به خوردگی در محیطهای اسیدی مثل اسید نیتریک و سولفوریک در تمام دماها و همه غلظتها برخوردارند. اما برخلاف چدن های نیکل- مقاوم ، عیب آن ، ترد بودن است که تنها با سنگ‌زنی می‌توان ماشینکاری نمود. مقاومت به خوردگی آنها در برابر اسیدهای هیدروکلریک و هیدروفلوریک ضعیف است. جهت مقاوم سازی به خوردگی در اسید هیدروکلریک می‌توان با افزودن Si تا 18-16% ، افزودن Cr%5-3 یا Mo %4-3 به آلیاژ پایه ، اقدام نمود.

چدن های سوزنی: در این چدنها Al به طور متناسبی جانشین Si در غلظت های کم می‌گردد. چدن های آلیاژهای Alدار تجارتی در دو طبقه بندی یکی آلیاژهای تا Al %6 و دیگری Al%18-25 قرار می‌گیرند. Al پتانسیل گرافیته‌شدگی را در هر دوی محدوده‌های ترکیبی ذکر شده حفظ کرده و لذا پس از انجماد چدن خاکستری بدست می‌آید. این آلیاژ به صورت چدنهای گرافیت لایه‌ای ، فشرده و کروی تولید می‌شوند. مزایای ملاحظه شده شامل استحکام به کشش بالا ، شوک حرارتی و تمایل به گرافیته شدن و سفیدی کم می‌باشند که قادر می‌سازند قطعات ریختگی با مقاطع نازک‌تر را تولید کرد. چدن های با Al کم مقاومت خوبی به پوسته پوسته شدن نشان داده و قابلیت ماشینکاری مناسبی را نیز دارا هستند. محل های پیشنهادی جهت کاربرد آنها منیفلدهای دود ، بدنه توربوشارژرها ، روتورهای دیسک ترمز، کاسه ترمزها ، برش سیلندرها، میل بادامکها و رینگهای پیستون هستند. وجود Al در کنار Si در این نوع چدنها باعث ارائه خواص مکانیکی خوب توام با مقاومت به پوسته‌شدگی در دماهای بالا می‌شود. این آلیاژها مستعد به تخلخل‌های گازی هستند. آلومینیوم حل شده در مذاب می توان با رطوبت یا هیدروکربنهای موجود در قالب ترکیب شده و هیدروژن آزاد تولید کند. این هیدروژن آزاد قابل حل در فلز مذاب بوده و باعث به وجود آوردن مک‌های سوزنی شکل در انجماد می‌شود.

انواع ماسه ( از نظر نحوه یافت و دسترسی ) :

الف) ماسه طبیعی : شامل ماسه های رودخانه ای و ماسه های بادی

ماسه طبیعی مستقیماً از منابع طبیعی ، استخراج و استفاده می شود و هیچگونه کار اضافی روی آن انجام نمی شود مثل ماسه کنار رودخانه ( این ماسه ها را بوسیله HCl آزمایش می کنند که حاوی آهک نباشد ).

حسن ماسه رودخانه ای در این است که شسته شده و میزان گردی بیشتری دارند در نتیجه کیفیت سطحی قطعات بالا می رود. اما در ماسه بادی ، خاک نیز وجود دارد که خاصیت چسبندگی دارد.

ب) ماسه مصنوعی:

در این حالت ، معادن طبیعی را شناسایی کرده و مثلاً آن را الک کرده و ناخالصی هایی مثل آهک را حذف می کنند و آن را خرد کرده و گرد می کنند ( این ماسه ها تحمل دمایی بالاتری دارند ).

انواع ماسه ( از نظر شکل ظاهری ) :

1-    ماسه های گرد:

در این حالت شکل ذرات ماسه در زیر میکروسکوپ ، کروی است. اکثر ماسه های مصنوعی از نوع ماسه های گرد هستند که کیفیت سطحی بهتری را ایجاد می کند و قابلیت عبور گاز بهتری  نیز دارد ( قابلیت عبور گاز به تخلخل ماسه مربوط است ).

2-    ماسه های شبهه گرد

این نوع ماسه در قسمت هایی گرد و در قسمت هایی گوشه دار است.

3-    ماسه های گوشه دار

این ماسه کاملاً گوشه دار است و بطور کامل در هم چفت می شوند و استحکام بالاتری ارائه می دهد و از نظر حمل و نقل قالب و حرکت مذاب و فشار مذاب ، استحکام بالاتری دارد اما قابلیت عبور گاز کم است.

4-    ماسه های مخلوط

این ماسه ها شکل خاصی ندارند 

انواع ماسه ( از نظر ترکیب شیمیایی ) :

1-    ماسه سیلیسی ( SiO2 )

سیلیس یک حالت آلوتروپیک و چند ساختاره دارد و در دماهای مختلف ، ساختارهای متفاوتی دارد ( منگنز، کبالت ، قلع و زیرکنیوم نیز آلوتروپیکند ). در نتیجه اگر با سرعت های مختلف سرد شود ، خواص متفاوتی ارائه می کند ( در طراحی قالب برای مواد دیر گداز ، مشکل ساز است زیرا منجر به ترک خوردن بدنه قالب می شود ).

 همان طور که از وزن مخصوص ها ( دانسیته ها ) ملاحظه می شود ، با تغییرات دما ، انبساط و انقباض در ابعادشان بوجود می آید که باعث  شکست قالب می شود ( بیشترین تغییرات را Cristobalite دارد ).

یک مزیت ماسه سیلیسی ، وجود معادن زیاد و ارزانی آن است.

متوسط ضریب انبساط این ماسه  Cm/Cm ºC 6-10×16.2 است ( یک نمونه استاندارد از ماسه می سازیم و تا دمای مورد نظر می بریم و نگه می داریم سپس یک درجه اضافه می کنیم و طول را اندازه گیری می کنیم ).

این ماسه برای ریخته گری قطعات آهنی و فولادی و فولاد آلیاژی مناسب نیست و بصورت ماسه Backing  استفاده می شود. در چدن ریزی معمولاً از ماسه سیلیسی مصنوعی استفاده می شود.

1-    ماسه زیرکنیوم ( ZrO2.SiO2 )

زیرکنیوم در طبیعت همراه با سیلیس است. غلظت زیرکنیوم در ماسه بین 40 تا 50 درصد است.

این نوع ماسه خاصیت انبساط حرارتی دارد و ضریب انبساط حرارتی آن حدوداً Cm/Cm ºC 6-10×4.5 است که از ماسه سیلیسی پایین تر است و برای مواد قالب و آجر و بدنه کوره مناسب است.هدایت حرارتی این ماسه بالاتر است و سریع تر خنک می شود ( 4 برابر کوارتز ). دارای وزن مخصوص ( دانسیته )  gr/Cm34.75 است که تقریباً 2 برابر ماسه سیلیسی است که یک مزیت است زیرا در واقع چگالی توده ، زیاد است و یک بخش از نیروی مذاب را خنثی می کند.

تحمل دمایی ماسه زیرکونی بالاست و خاصیت دیرگدازی خوبی دارد  درنتیجه برای فلزات با دمای ذوب بالا کاربرد دارد ( حدوداً در ºC 2000 به حالت خمیری در می آید ). از دیگر خصوصیات این ماسه دانه های گرد و منظم و عدم خیس شدن توسط مذاب ( نمی چسبد ) و عدم تمایل به واکنش شیمیایی با اکثر فلزات است و اگر سرباره یا مذاب ، دارای موادی باشند که باعث خوردگی بدنه کوره شود ، این ماسه مقاوم است. 

2-    ماسه الوینی ( سیلیکات های مضاعف آهن و منیزیم (Mg.Fe)2SiO2 )

Forsterite         2MgO.SiO2    ,  Fayalite           2FeO.SiO2

دیرگدازی این ماسه نسبت به ماسه سیلیسی بالاتر و از ماسه زیرکونی کمتر است ( ºC 1850-1750 ) که برای فولاد ساده و پر کربن و کم آلیاژ مناسب است. این ماسه دارای وزن مخصوص ( دانسیته ) gr/Cm3 3.3 است و از نوع ماسه های گوشه دار است. انبساط حرارت این ماسه از ماسه سیلیسی کمتر و از ماسه زیرکونی بالاتر است. 

3-    ماسه کرومیتی ( FeO.Cr2O3 )

این ماسه عمتاً بصورت ماسه رویه ( Facing Sand ) استفاده می شود ، دیرگدازی بالایی دارد ( ºC 1850-1450 ) که هر چه اکسید کرم کمتر باشد بهتر است. این ماسه دارای وزن مخصوص ( دانسیته )  gr/Cm34.5 می باشد. در شرایطی که با چسب خاک رس ترکیب شود در ºC 1000 دارای انبساط حرارتی mm/mm 0.17 است ، سیلیس در همان شرایط دارای انبساط حرارتی mm/mm 0.6 و زیر mm/mm 0.076 است. این ماسه ، سیاه رنگ و از نوع ماسه های گوشه دار است.

4-    ماسه شاموتی ( 3Al2O3.SiO2 )

این ماسه دارای دیرگدازی ºC 1750-1670 است که هر چه Al2O3 بیشتر باشد ، بهتر است. از این ماسه در ریخته گری بصورت آجر و بدنه کوره استفاده می شود. این آجر نارنجی نیز دارای انبساط و انقباض بوده و ترک می خورد. این ماسه برای فولاد آلیاژی و کم کربن مناسب است. 

انتخاب ماسه :

از چند نقطه باید نمونه گیری کرد و تست ترکیب شیمیایی و دیر گدازی و .... انجام داد ( برای اینکه رطوبت و مواد همراه ماسه تبخیر نشود ، باید در ظرف بسته نمونه برداری کرد

خواص عمومی ماسه ریختگی :

1)      استحکام در حالت تر ( Green Strength ) : استحکام فشاری و برشی در گوشه ها

2)    استحکام در حالت خشک ( Dry Strength )

3)      استحکام در حالت حرارتی ( Hot Strength ) : سریع به دمای بالا می رسد ، وقتی رطوبت خود را از دست می دهد نباید شکل خود را از ذست بدهد زیرا باعث ایجاد ترک و خرد شدن یا پلیسه و زائده و رگه می شود.

4)      قابلیت عبور گاز ( Permeability ) : گاز متصاعد شده از چسب و پوشش و هوای داخل باید خارج شود. به شکل و دانه مواد قالب و میزان کوبش و چسب و رطوبن بستگی دارد.

5)      پایداری حرارتی ( Thermal Stability ) : ابعاد خود را حفظ کند و ضریب انبساط حرارت پایین داشته باشد.

6)      دیرگدازی ( Refractoriness ) : مواد قالب تغییر حالت ندهد و سوخته و ذوب نشود و مقاوم به حرارت باشد.

7)      قابلیت شکل گیری ( Flowability ) : به اندازه دانه بستگی دارد.

8)      کیفیت سطحی ( Produces Good Casting Finish ) : به خواص فیزیکی دانه بستگی دارد.

9)      قابلیت فروپاشی ( Collapsibility ) : تابع نوع چسب مصرفی است.

10)  قابلیت بازیافت ( Reusable )

11)  تهیه و کنترل ساده

12)  درت خنک کنندگی ( Remove Heat )

نکته : ماسه سیلیسی را با خاک اره مخلوط کرده و جلو انبساط و انقباض را می گیرند یا با چسب سیلیکات سدیم و مواد افزودنی برای راحت جدا شدن مخلوط می کنند.

نکته : رطوبت در صنعت بین 4 تا 6 درصد وزنی است ، اگر رطوبت کم باشد ، استحکام تر کاهش می یابد و اگر زیاد باشد ، باعث ایجاد موک گازی می شود ( استحکام تر psi 7-6 است ).

 

 



موضوع مطلب :
۱۳٩٠/٩/٢۸ :: ٦:۳٩ ‎ب.ظ ::  نويسنده : روح الله موسوی